
1

Discovering Atypical Flights in Sequences of Discrete Flight
Parameters

Suratna Budalakoti, University of California, Santa Cruz, suratna@soe.ucsc.edu,
Ashok N. Srivastava, Ph.D., NASA Ames Research Center, Ashok.N.Srivastava@nasa.gov,

Ram Akella, Ph.D., University of California, Santa Cruz, akella@soe.ucsc.edu

Abstract— This paper describes the results of a novel
research and development effort conducted at the
NASA Ames Research Center for discovering anoma-
lies in discrete parameter sequences recorded from flight
data 1 2.Many of the discrete parameters that are recorded
during the flight of a commercial airliner correspond to
binary switches inside the cockpit. The inputs to our sys-
tem are records from thousands of flights for a given class
of aircraft and destination. The system delivers a list of
potentially anomalous flights as well as reasons why the
flight was tagged as anomalous. This output can be an-
alyzed by safety experts to determine whether or not the
anomalies are indicative of a problem that could be ad-
dressed with a human factors intervention. The final goal
of the system is to help safety experts discover significant
human factors issues such as pilot mode confusion, i.e., a
flight in which a pilot has lost situational awareness as re-
flected in atypicality of the sequence of switches that he
or she throws during descent compared to a population of
similar flights. We view this work as an extension of In-
tegrated System Health Management (ISHM) where the
goal is to understand and evaluate the combined health
of a class of aircraft at a given destination.

1. INTRODUCTION

Previous approaches to the task of anomaly detection fo-
cus on continuous sensor data [2], and do not distinguish
discrete sensors from continuous, thus disregarding the
non-continuous as well as the sequential nature of the
discrete sensors. In comparison, we focus on discrete
sensors, specifically, sensors recording pilot actions, or
switches. We are interested in the sequence in which the
values for these sensors change during the course of a
flight and finding anomalies in flight behavior based on
this information.

Our system performs two tasks, as part of the task of
atypical events detection in flights: a) detection of atyp-
ical flights, b) finding events during the course of such
flights that are anomalous or atypical. Task b) is impor-

�
0-7803-9546-8/06/$20.00 c

�
2006 IEEE�

This work was supported by the NASA Aviation Safety Program,
Aviation Systems Monitoring and Modeling element.

tant as each flight generates large amounts of data during
its course, and simply identifying a flight as anomalous
still leaves the problem of identifying the problem areas
inside the flight unaddressed.

We treat the problem of finding atypical flights as an un-
supervised learning problem. We first cluster the flights
for each itinerary into groups, and identify the outliers in
each cluster as atypical. We use the Longest Common
Subsequence, a common measure in bioinformatics and
Intrusion Detection systems, as the similarity measure
for clustering flight data. We then present two new al-
gorithms that use Bayesian Networks to efficiently iden-
tify anomalous events during the course of the flight. We
demonstrate the performance of these algorithms using
operation information from about 10,000 flights, and de-
veloping the base clusters and locating anomalous flights
by using these sequences.

Sequence analysis is an active and much-studied area in
computer science. Some areas where sequence analy-
sis algorithms are prominent are anomaly-based intru-
sion detection in computer system/network, and in bioin-
formatics. The problem of anomaly detection in aircraft
data, in fact, has many similarities to the problems of net-
work intrusion detection. Anomaly based network intru-
sion detection techniques work by forming some sort of
model of what constitutes normal activity in a network.
Any deviation from this normal behavior is flagged as
anomalous. Our approach to the problem of anomaly
detection in aircraft data has similarities to the work of
Sequeira and Zaki [3], in that both use sequence analysis
based methods, though there are significant differences
in detail.

2. DATA DESCRIPTION AND
PREPROCESSING

The flight data the prototype system was implemented
over was derived from binary sensors in the aircraft dur-
ing the landing phase of 6400 flights. All of these flight
has the same destination airport. The data was stored as
a ��������	 matrix, where T is the number of distinct
observations for the sensors, N is the number of sensors,
and F is the number of flights. So, we had a �
���

2

0 200 400 600 800 1000 1200 1400 1600
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Sequence Lengths

N
um

be
r

of
 S

eq
ue

nc
es

Figure 1. Histogram showing distribution of flight se-
quence lengths.

matrix for each flight. This matrix was reduced to a one-
dimensional sequence as follows:

1. The initial value of each sensor was assumed to be
zero.
2. At any time-step t, only the sensors that show a tran-
sition in value, were recorded in the final sequence.

The above transformation gave us a dataset consisting of
6400 sequences, with sequence lengths varying over a
wide range, between 600 and 9000 characters. Follow-
ing this, we performed another reduction step, where all
sensors that changed values an average of thirty or more
times were removed from the sequences. This was done
with the assumption that sensors that changed values so
frequently were not recording pilot actions, but aircraft
system response to pilot actions. This reduced the se-
quence lengths further. Figure 1 contains a histogram
describing the distribution of the new sequence lengths.
As the figure shows, around 4000 of the sequences are of
lengths 0-500, another 1500 have lengths between 500
and 1000, while the rest have lengths between 1000 and
1600.

3. OUTLINE OF APPROACH

The main steps performed for detecting anomalies in the
flight data were as follows:

1. The sequences were clustered into groups/clusters.
The sequences inside each cluster were more similar to
each other than to sequences in other clusters. The simi-
larity measure used was the normalized longest common
subsequence. The next section presents a detailed dis-
cussion of the similarity measure.

2. A certain percentage of the sequences in each clus-
ter were identified as atypical, for further investigation.

The sequences picked were the sequences which had the
lowest similarity score with the most central sequence in
each cluster(the most central sequence for each cluster is
identified during the clustering step described above).

3. We analyzed each atypical sequence for anomalies.
New algorithms were developed as part of this stage,
which performed a weighted comparison of the atypical
sequence with the other sequences in the cluster, with the
aim of discovering the significant differences between
the other sequences in the cluster and the atypical se-
quence being analyzed. This was an important step of the
analysis as simply classifying a certain flight as anoma-
lous still leaves a lot of information to be processed by
the analyst, to identify why this particular flight was con-
sidered anomalous. The aim of this step of the processing
was to automate this task as far as possible.

We provide an informal introduction to these algorithms
in the following pages. The complete details of these
algorithms can be found in [8].

4. THE NORMALIZED LONGEST COMMON
SUBSEQUENCE MEASURE

The Longest Common Subsequence(LCS) is a common
measure for comparing two sequences. Some common
domains of application are bioinformatics, for compar-
ing genome or protein sequences, and in computer sys-
tem/network intrusion detection systems [3], for compar-
ing user access patterns.

Given two sequences A and B, B is a subsequence of A
if removing some characters from removing some char-
acters from A will produce B. For example, suppose se-
quence A is given by ‘abcdef’, and sequence B is given
by ‘bce’. Then removing characters a, d and f from A
will produce B. Hence B is a subsequence of A.

A sequence B is described as a common subsequence
of two sequences A and C, if removing some charac-
ters from both A and C will produce B. For example,
if a sequence C is given by ‘gdbefce’. Then B(‘bce’)
is a common subsequence of both C and A, as remov-
ing the characters at locations 1,2,4,5 from sequence C
will give B, and removing characters at locations 1,4,6
from sequence A will give sequence B. The longest such
subsequence between two given sequences is called the
longest common subsequence.

Other measures used for comparing sequences include
the ‘Match Count Polynomial Bound’(MCP), and its
variants. A detailed discussion of these measures, and
a comparison with LCS, can be found in [1]. However,

3LCS differs from these measures mainly in that the MCP
family of measures does a one-to-one comparison of se-
quences. For example, given two sequence A=‘abce’
and B=‘bcde’, the MCP similarity would be 1, as MCP
counts exact 1-1 location matches, which in the above
case is only for ‘e’ in the fourth location. However, the
length of the LCS in the above case is 3(‘bce’). Thus,
the advantage of using the LCS measure is that it detects
similarities between two sequences even if they are out
of ‘phase’.

Due to the varying lengths of the flight sequences, we
normalize the LCS value. We call the normalized value
the normalized Longest Common Subsequence score, or
nLCS. Given two sequences ��� and ��� , the formula to
calculate the nLCS is given by:

���	� ��

�� ������������� ���� �� ��������� � � ��� �� ��������� � � �

For example, let A = ‘abcdefg’. Let B = ‘fbdfeacg’. Then
the LCS is given by ‘bdeg’, and the length of the LCS =
4. Then

����� ��
 � ! �#"

%$'&)(*"

However, the nLCS is a difficult and computationally ex-
pensive measure to compute. This is because there is
no fast method to find the LCS between two sequences.
The classical approach is to use the optimal substructure
property of the Longest Common Subsequence. This
property is given as follows:

Let X = + , �*- , �.- &/&#& - ,10 2 and Y = +3 �4- 3 �.- &#&/& - 3.5 2 be two sequences. Let the LCS be
given by Z = +76 �4- 6 �*- &#&#& - 64892 . Then

1. If ,:0;
 3<5 648=
>,10;
 3.5 and ?@8BA � is the LCS ofC 0DA � and 3 5 A � .
2. If ,:0;E
 3.5 then 648FE
G,:0 implies that Z is an LCS ofC 0DA � and Y.
3. If ,10HE
 3.5 then 648IE
 3.5 implies that Z is an LCS of
X and J 5 A � .
This property is used to construct a dynamic program-
ming algorithm to find the LCS. More information on

this algorithm can be found in [4]. An alternate approach
is the Hunt-Szymanski algorithm [5]. However, both al-
gorithms are expensive and take a long time to compute
the LCS, especially as the sequence length increases, a
common reason due to which the LCS is not used as a
similarity measure in practice. As part of the project, we
developed a new hybrid algorithm that used ideas from
both the approaches mentioned above, to calculate the
LCS. Our new LCS algorithm was upto five times faster
than the current algorithms. This enabled us to cluster
the sequences data many times faster than current algo-
rithms are capable of. More information on our new hy-
brid algorithm for calculating the LCS can be found in
[8].

5. CLUSTERING AND OUTLIER DETECTION

The flight sequences were clustered using a k-medoids
algorithm called CLARA (Clustering LARge Applica-
tions) [6], [7]. CLARA is a modified version of the PAM
(Partitioning Around Medoids) [6] algorithm. Given a
value of k for a dataset, PAM finds k clusters in the
dataset. It finds the clusters by finding a representative
data point for each cluster. For each cluster, the represen-
tative point, called the medoid, is the most central point
in the cluster, or, the point which has the highest aver-
age similarity compared to all other points in the cluster.
Given the medoids, the clusters can be found as follows:
assign each data point to the medoid with which it gives
the highest similarity score. Hence, to calculate the clus-
ters, it is sufficient to calculate the medoids.

PAM finds the medoids that would maximize the qual-
ity of a clustering, that is, medoids for which the average
similarity of each medoid with its respective cluster is
maximum overall. However, PAM is a computationally
expensive algorithm. CLARA tries to cut down on the
time taken for computation by randomly picking a data
subsample from the dataset, and finding the medoids for
this subsample. The medoids selected for this subsample
are then treated as medoids for the entire cluster. The in-
tuition behind CLARA is that if the subsample is picked
with sufficient randomness, it will mimic the original
dataset in its distribution, and the medoids for the sub-
sample shall be sufficiently close to the original dataset.

Table 1 summarizes the results of clustering on the test
dataset of 6400 flights. Three clusters were discovered
in the data. The largest cluster contained around 52%
of the flights, and had a high average similarity of 0.72.
The second cluster contained around 35% of the flights
and had a high average similarity of 0.71. The above in-
formation suggests that at least 70% of the switches are
flipped in the same order in most flights, as the nLCS

4Table 1. Results of clustering on the test dataset of 6400 flights. Clustering yielded one large and one medium-sized
cluster(clusters 1 and 2) with high average similarity, and one small cluster with low average similarity(cluster 3).

Cluster Count Cluster Size Percentage of total cluster Mean Similarity(nLCS) Median Similarity(nLCS)
1 3301 52% 0.72 0.75
2 2253 35% 0.71 0.71
3 846 13% 0.55 0.55

measures the degree to which two sequences follow the
same order. This is interesting, and suggests that se-
quence analysis techniques are suitable for the task of
comparing and discovering anomalies in flight switch
data.

The third cluster was very small in comparison to the
first two clusters, containing only around 13% of the total
flights, and had a low overall similarity score, of 0.55.
There is a strong possibility that the small cluster consists
largely of anomalous flights, though more investigation
into the operational significance of these clusters needs
to be done to establish this.

Following the clustering step, a certain percentage of the
flights from each cluster, that were farthest from the clus-
ter centre(medoid), were classified as atypical for further
investigation. The next section describes methods for de-
tecting anomalies inside these atypical flights.

6. DETECTING ANOMALOUS EVENTS IN
ATYPICAL FLIGHTS

In the previous section, we described our approach to-
wards finding flights that are atypical and contained
events that did not follow established patterns. However,
it is not sufficient to detect flights with anomalies, as this
still leaves a lot of information to be analysed, to iden-
tify what the exact events were. In this section we dis-
cuss the anomaly detection algorithms we designed, that
are able to identify anomalous events inside a flight se-
quence, thereby automating this step to a great extent.
These algorithms identify any unusual event as anoma-
lous. No operational information is currently used for
this step.

The type of anomalous events we expect the algorithms
to detect can be divided into three categories:

1. A sequence of switches are normally flipped at the
current stage in flight, but were not flipped.
2. A sequence of switches are normally not flipped at the
current stage in flight, but were flipped.
3. A sequence of switches were flipped in the wrong or-
der.

The algorithms understand these events in terms of in-
sertions and deletions. For example, if a sequence of
switches is normally not flipped at the given stage of
flight, but was flipped for a particular anomalous flight,
the algorithms suggest that these switches should be
deleted from the flight to make it more normal. Similarly,
if some switches should have been flipped, but were not
flipped, the algorithms suggest that these switches be in-
serted into the flight to make it more normal. Note that
Case 3, where switches are flipped in the wrong order,
is simply a combination of insertions and deletions. For
example, if we have a switch sequence ABC, when the
normal sequence for pressing these switches is ACB, the
algorithms will suggest that the switch C be deleted from
its current location, and be instered in front of switch B.
Combined together, these two suggestions give us the in-
formation that the switches were pressed in the wrong
order.

We developed two algorithms for anomaly detection: a)
an ‘insertion algorithm’ that predicts desirable insertions
in the atypical sequence, covering Type 1 in the three
events described above, and b) a ‘deletion algorithm’ that
predicts desirable insertions into the atypical sequence,
covering Type 2 of events. Type 3 of anomalous events
are covered by the insertion and deletion algorithms in
tandem.

We again utilize the Longest Common Subsequence to
find the desirable insertions and deletions into the atypi-
cal sequence. This is because, the common subsequence
between two sequences gives us the areas of the two se-
quences which follow the same order. If there are re-
gions inside a sequence that are not part of the longest
common subsequence with most or all of the sequences
in the cluster, it can only be because, a) they are in the
wrong location compared to the rest of the flight, or b)
they are in the wrong order.

These ideas are formalized by constructing an objective
function to maximize for the atypical sequence, and then
identifying insertions and deletions to the sequence that
will maximize this function. Intuitively, the objective
function is a measure of how similar the atypical se-
quence is to the cluster it occurs in, and one simple objec-

5tive function could be the average nLCS similarity score
of the atypical sequence with all the sequences in the
cluster. We use a more sophisticated objective function,
where we model each cluster as a Bayesian Network.
The objective function, in that case, is the probability
of generation of the atypical sequence from this Net-
work. After the objective function has been defined, the
next step is to identify the insertions and deletions which
would maximize the objective function. That is, intu-
itively, we identify the insertions and deletions which, if
made to the atypical sequence, would increase the simi-
larity of the atypical sequence with the cluster it belongs
to, or, in other words, make it less anomalous. These
changes are identified using a greedy algorithm which,
at each step, identifies the modification to the sequence
that would improve the score by the greatest margin.

We now provide some examples of the type of anoma-
lies that can be discovered by the algorithms. In these
examples we compare how the algorithms react given a
‘usual’ flight pattern and a new sequence that does not
follow that pattern. However, it must be remembered that
the algorithms do not identify/generate any single flight
from the cluster as a ‘usual’ flight. Instead, they make
a probabilistic comparison of the atypical sequence with
all the flights in the cluster. The ‘usual’ flight sequence,
in the discussion below, is just a concept constructed to
provide a more intuitive understanding of how the algo-
rithms operate.

Example 1: Switches normally flipped at the stage of
flight were not flipped.

Suppose, at a given stage of flight, the usual flight switch
pattern is given as follows(here the numbers represent
different switches):

101 105 102 105 103 107 106

Now, suppose we are analyzing an atypical sequence,
where the flight switch pattern at the same stage is given
by:

101 105 102 105 106

Here, the first four switches match identically, but
switches 103 and 107 are missing from the atypical se-
quence.

In this case, the insertion algorithm will suggest that
switches 103 and 107 be inserted after switch 105 at lo-
cation 4, in the atypical sequence. Importantly, it will not
suggest that switch 102 be inserted after switch 105, even
though 102 also occurs after switch number 105, right af-

ter location 2. It is able to avoid that confusion because it
established a longest common subsequence between the
two sequences, which matches the 105s at location 2 in
the two sequences.

Example 2: Switches normally not flipped at the stage
of flight were flipped. Suppose we have the following
switch sequence pattern as usual at a given stage:

101 105 102 105 106

And the atypical sequence follows the following pattern:

101 105 102 105 107 106

In this case, we have a 1-1 correspondence between the
first four switches in both sequences, and between the
switch at location 5 in the first sequence, and the switch
at location 6 in the second sequence. However, switch
number 107 does not match. In this case, the deletion
algorithm will suggest we delete the switch 107 from the
atypical(second) sequence.

Example 3: Switches were flipped in the wrong order.

Let the usual pattern for switches be

101 103 105 * 107

Let the atypical sequence be

101 103 107 * 105

Here the asterix(*) represents wildcards. That is, there
may be switches that are usually pressed between 105
and 107, but the fact that 107 is pressed after 105 remains
constant. In this case, as the atypical sequence has switch
105 pressed after switch 107, the deletion algorithm will
suggest that switch 105 be removed from its location in
the atypical flight sequence. The insertion algorithm will
suggest that switch 105 be inserted before switch 107.
Combining these recommendations, we are able to de-
duce that the switches 107 and 105 were pressed in the
wrong order.

7. DESCRIPTION OF ALGORITHM OUTPUT

The anomaly detection algorithms present the following
output:

1. A graph showing the anomalous areas inside an out-
lier sequence. Figure 2 presents the graph output for a
sample atypical flight taken from the data. The horizontal
axis represents the time remaining till touchdown. The

6

Figure 2. Sample graph for landing stage of a flight.The x-axis represents the time till touchdown. The bars along
the positive y-axis represent the switches usually pressed at that stage of flight, but not pressed in this flight. The
bars along the negative y-axis represents the switches usually not pressed at that stage, but pressed for this flight. The
height of the bars gives the algorithm’s confidence in its prediction. The color represents the altitude.

positive direction of the vertical axis represents the desir-
able insertions, that is, switches that are usually pressed
at that stage of the flight, but were not pressed for this
particular flight. The negative direction represents the
desirable deletions, that is, the switches that are usually
not pressed at that stage of the flight, but were pressed on
this flight. The height of the columns indicates the confi-
dence of the prediction. The confidence is calculated as
proportional to the improvement in the score of the ob-
jective function defined for the atypical sequence, if that
particular addition/deletion was made to the sequence. A
graph with no bars would mean that the algorithm can-
not suggest any desirable insertion/deletions with non-
zero confidence, and would represent a completely nor-
mal flight. The color of the columns is representative of
the altitude. The colors change from darker to lighter, as
the altitude decreases (for the graph in Figure 2, the al-
titude information was synthetically generated, and does
not represent the actual altitude information for the given
flight).
The graph provides a simple visual interface that will al-
low the analyst to focus his interest on the areas which

seem most suspicious. For detailed information on these
anomalies he/she can access at a table generated by the
algorithms in parallel.
2. A report on the anomalous areas. A report is gener-
ated, giving detailed information about each anomalous
event in the sequence. The report tells the analyst about
the switches anomalously pressed/not pressed during the
flight, along with the confidence.

8. CONCLUSIONS

This paper shows a novel algorithm to detect anomalies
in discrete sequences that record the switch positions in
the cockpits of commercial airliners. The results so far
are promising in that they indicate that we are able to
identify anomalies in very large data sets of aircraft se-
quence data. Moreover, we are able to indicate time steps
at which certain switches should have been either de-
pressed or left unchanged.

The algorithm is fast and scalable and has several advan-
tages over standard methods, because it takes advantage

7of the sequential nature of the data. We plan to apply
these techniques to general ISHM problems for a wide
variety of aerospace platforms.

In the next stage of the project, we also plan to build more
sophisticated models of the data sequences, such as by
grouping common sets of contiguous symbol sequences
under a single ’super-symbol’, and by training a Hidden
Markov Model over these ’super-symbol’ groups. We
also plan to reduce the number of false alarms raised by
the anomaly detection algorithms. These false alarms oc-
cur because all detected anomalies are not equally im-
portant. For example, an anomaly involving a pilot talk-
ing to the control tower at an occasion different from
usual, is not as important as an anomaly where some
significant step of the landing phase was not executed.
This can be taken into account by building probabilistic
models of the sequence ‘gaps’, that is areas within se-
quences that do not form a part of the longest common
subsequences. These probabilistic models could be sim-
ple maximum likelihood estimate models, or more soph-
siticated models, such as modeling the gap as a Hidden
Markov Model, or as an even following a Poisson distri-
bution.

REFERENCES

[1] T. Lane, “Machine learning techniques for the com-
puter security domain of anomaly detection”, Ph.D.
Thesis, CERIAS TR 2000-12, Purdue University,
August 2000.

[2] B. Amidan, and T. Ferryman, “Atypical Event and
Typical Pattern Detection within Complex Sys-
tems”, IEEE Aerospace Conference, 2005.

[3] K. Sequeira and M. Zaki, “ADMIT: Anomaly based
Data Mining for Intrusions”, Proceedings of the
Eighth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining(SIGKDD),
2002.

[4] T. Cormen, C. Leiserson, R. Rivest and C. Stein,
“Introduction to algorithms”, The MIT Press; 2nd
edition.

[5] James W. Hunt and Thomas G. Szymanski, “A Fast
Algorithm for computing Longest Common Sub-
sequences”, Communications of the ACM, Volume
20, Issue 5 (May 1977), Pages: 350 - 353.

[6] L. Kaufman and P.J. Rousseeuw, “Finding Groups
in Data: An Introduction to Cluster Analysis”, John
Wiley and Sons, Inc., New York (1990).

[7] R. T. Ng and Jiawei Han, “CLARANS: a method
for clustering objects for spatial data mining”,
IEEE Transactions on Knowledge and Data Engi-

neering, Volume 14, Issue 5 (Sep/Oct 2002), Pages:
1003 - 1016.

[8] S. Budalakoti, A. N. Srivastava, R. Akella, E.
Turkov, “Anomaly Detection in Large Sets of High-
Dimensional Symbol Sequences”, Submitted for
evaluation, 2005.

